Tag Archives: chronometer

It’s 2 metals in 1!

This next part is crazy. I don’t know how Harrison dreamed up this idea. I don’t know how it’s even possible. Maybe a reader with experience in welding can help me out.*

Because metal springs are susceptible to temperature changes, which make them less reliable and accurate, Harrison invented the bimetallic strip. It is 2 metals, like steel and brass, welded together.

Did you get that? It’s possible to weld, or fuse, or something, steel and brass now. The watch’s mainspring needs always to be springy. When it’s cold, the spring becomes too stiff. When it’s hot, the spring becomes too loose. Harrison fused two metals together—steel and brass—in a spring. If the steel were too tight, the brass would keep it loose. If the brass were too loose, the steel would tighten it up. This way the spring would keep the same springiness no matter the temperature.

* This weekend I had the pleasure of consulting 2 engineers, my sister’s boyfriend Dave and my nephew Andrew. They tell me with enough heat, two different metals can be fused together. The two metals would be hammered together many times under heat until they were one. Andrew added that it’s only air molecules that keep metals from fusing together in the first place.

https://pineknollclockshop.blogspot.com/2012/07/making-clock-spring.html

http://www.edubilla.com/invention/bimetallic-strip/
https://books.google.com/books?id=6nBaPUlmSaEC&pg=PA546&lpg=PA546&dq=harrison+bimetallic+strip+spring&source=bl&ots=HjZiOZ5FI-&sig=ACfU3U1JQe0j77cZ9JM0nte1fIEWqFmR6g&hl=en&sa=X&ved=2ahUKEwjk2dOl083pAhUKAZ0JHafLCbcQ6AEwDXoECAwQAQ#v=onepage&q=harrison%20bimetallic%20strip%20spring&f=false

Thermobimetals


https://en.wikipedia.org/wiki/Balance_wheel

Back to the beginning of The Western Civ User’s Guide to Time & Space

Watch works

You remember an escapement is a way of slowly releasing energy that powers a clock. A watch didn’t use a pendulum for its escapement—it used a coiled metal mainspring and balance wheel. You wind the spring tightly and the spring wants to unwind. As it unwinds, its energy is released to oscillate the balance wheel back and forth. As the balance wheel oscillates, it swings a little fork side-to-side which stops and releases a gear. This is the watch’s escapement. No matter how the watch is bounced around, the spring keeps on releasing energy at a steady, reliable pace.

The wound-up spring wants to uncoil, to expand. As it expands, it pushes and turns the balance wheel. But the balance wheel is weighted so it only turns so far and then it swings back. When the balance wheel swings back it tightens the spring again. The wound-up spring wants to uncoil, to expand. As it expands, it pushes and turns the balance wheel. But the balance wheel is weighted so it only turns so far and then it swings back. When the balance wheel swings back it tightens the spring again. (Repeat over and over and over and…)




https://sciencing.com/analog-clocks-work-4912745.html
https://www.jcwa.or.jp/en/time/qa/qa07.html
https://www.wixonjewelers.com/education-type/watch-movements/
https://malalan.eu/how-it-works-escapement/
This beautiful video has French narration but the visuals are self-explanatory: The escapement animation starts at 3:30.

Back to the beginning of The Western Civ User’s Guide to Time & Space

The Grasshopper

Since John Harrison was a cabinet-maker, he knew all about constructing things from wood. In fact, the first clocks he built as a young man had all-wood mechanisms. When designing a ship’s clock, he replaced many metal parts with wooden ones. Harrison used an oily wood named Lignum Vitae which didn’t need to be lubricated. Then, he designed a brand-new kind of escapement: the Grasshopper. The Grasshopper escapement worked with way less contact with the clock’s gears, which meant less lubrication was needed.




Back to the beginning of The Western Civ User’s Guide to Time & Space

A dumbbell idea

The problem with clocks in the 1700s: the ship’s rocking messed up a clock’s pendulum movement; the salty sea air corroded the metal gears; changes in temperature and humidity made metal clock parts expand & contract. All these things made a clock inaccurate—it was too slow or too fast.

Harrison came up with some innovative ideas to counter-act these problems. The first one was a dumbbell-style of pendulum. Instead of a rod with a weight at the bottom swinging from an axis, Harrison put the axis in the middle of 2 rods with weights at top and bottom—then he connected them with springs so they would keep moving back and forth no matter how the ship bounced around.

Standard-issue pendulum at the left; Harrison’s dumbbell movement at the right.

Start at 1:00—

Back to the beginning of The Western Civ User’s Guide to Time & Space

The clockmaker

In our last post you saw how to find your location by observing the moon and stars to calculate lunar distance. The object is to know both your local time and prime meridian time, or Greenwich Mean Time. A navigator needs to be an astronomer and a math whiz to use this method.

You may have asked yourself, “Wouldn’t it be easier to keep 2 clocks aboard the ship—one showing Greenwich Mean Time and the other kept to local time?” That’s an excellent question and I’m glad you asked it. In fact, that’s the question John Harrison asked.

John Harrison, English inventor and horologist, 1767.

John Harrison was a cabinet-maker with a side business building and repairing clocks. To win the Longitude Prize, he went for a straightforward solution: build an accurate clock that always, ALWAYS showed precisely the correct time in Greenwich.

Back to the beginning of The Western Civ User’s Guide to Time & Space